
18 CROSSTALK The Journal of Defense Software Engineering December 2001

Automated Transformation of Legacy Systems
Philip Newcomb and Randy A. Doblar

The Software Revolution, Inc.

The transformation of system applications code and database at automation levels exceeding 99 percent is now a
viable approach to legacy information system modernization. The benefit of the approach is migrating the legacy sys-
tem to a modern computing environment while preserving the repository of business knowledge and processes imbed-
ded in the legacy system.

During the last 50 years, information
processing systems have become the

intellectual repositories for most business
and government organizations. Today these
organizations face the complex and costly
problem of how best to restructure the
installed base of outdated information pro-
cessing resources while maintaining their
legacy intellectual property. This legacy
intellectual property continues to provide
value as organizations are forced to innovate
to survive in the fast-paced age of e-busi-
ness, e-communication, e-organizations,
and in the case of the military, e-warfare. 

The need to modernize legacy systems
is primarily driven by three factors: expan-
sion of the system’s functionality;
improved maintainability of the system
using modern tools and techniques; and
reduction of operational costs and
improved reliability by replacing obsolete
hardware suites with high-speed, open-
architecture systems. Alternative solutions
for modernization of the system include
developing a new system, system replace-
ment with a commercial off-the-shelf
(COTS) solution, or manual rewriting of
the legacy applications software and data-
bases to operate within a modern comput-
ing environment. 

Developing a totally new system or
replacing legacy systems by manually
rewriting the system’s software with the
support of semi-automated tools is

extremely costly and time consuming.
Replacing the system using COTS tech-
nologies, while less costly and timelier,
usually requires extensive and expensive
customization to provide functionality not
provided by the COTS product. In addi-
tion, the Gartner Group has shown that
the success rate for information system
modernization projects using these tradi-
tional solutions has thus far been approxi-
mately 7 percent; it is a success rate that
has not bred confidence within the infor-
mation technology (IT) community. 

Manual approaches have been prone to
failure due to inconsistency, cost overruns,
and schedule delays. COTS solutions have
fallen short of expectations because of
their inability to provide the customer
with the functionality needed to meet its
specific organizational goals. And semi-
automated tool-based solutions, while rel-
atively promising, have not provided a suf-
ficient level of automation to overcome
the drawbacks associated with manual
intervention required to address untrans-
formed code. 

Looking more closely at the automated
transformation approach, it becomes evi-
dent that using available tools capable of
transforming 60 percent or less of a sys-
tem’s legacy code automatically results in
extensive amounts of untransformed code
that must be addressed manually. Using a
one million-line information system as an

example, 400,000 lines of code would
remain to be addressed manually. 

The Gartner Group, an industry-rec-
ognized source of business and technology
intelligence, states that on average a well-
trained programmer can transform 160
lines of code per day.  Continuing to use a
one million-line information system and a
transformation tool capable of only 60
percent automation as our example, the
resultant 400,000 lines of untransformed
code would require 2,500 man-days of
manual intervention. If however, a trans-
formation tool was available that provided
a 99 percent level of automation, that
same one million-line system would only
have 10,000 lines of untransformed code
to be addressed in 62.5 man-days of man-
ual intervention – a significant qualitative
and quantitative improvement. Increasing
the automation level therefore, as it relates
to the quality and degree of transforma-
tion completeness is highly desirable and
is a significant factor in selecting the opti-
mal automated transformation solution. 

Through the application of a suite of
artificial intelligence (AI) technology
tools, it is now possible to achieve levels of
automation often exceeding 99 percent to
assess, transform, re-factor or re-engineer,
and if desired, web-enable a wide variety
of legacy computer programming lan-
guages, along with system databases, into
modern, platform-independent object-ori-
ented software environments (Figure 1). 

Much of the work to develop such a
highly automated legacy system modern-
ization technology originated from the Air
Force-funded Knowledge-Based Software
Assistant (KBSA) transformation research
program in the late 1980s and early 1990s.
The focus of that program was research to
develop highly automated processes for
program specification and synthesis.
Program transformation technologies were
adapted to achieve a highly extensible and
adaptable tool suite and technology base
to support the recreation of legacy system
code in a new target language with mini-
mal manual intervention. One of the
author’s work in support of KBSA at

Figure 1: Legacy System Transformation Solution Space



Boeing’s Research and Technology
Laboratory laid the foundation for the
currently available automated technology.
The automation levels currently being
achieved for the vast majority of transfor-
mation tasks have exceeded 99 percent. 

Employing this highly automated
approach, legacy systems can be modern-
ized in a fraction of the time and cost
needed by the competing alternatives dis-
cussed, thus dramatically reducing the
time associated with return on investment.
The application of the AI technology also
reduces the technical and schedule risks
associated with the modernization process,
while simultaneously reducing the flow
time of the project. The process provides a
fully documented, functional system that
is in a state to be maintained and upgrad-
ed using modern tools and software work-
benches.

Examples of performance metrics for
projects recently addressed using this tech-
nology include a 40-to-1 reduction in
functional testing time for a JOVIAL
transformation task of 250,000 lines that
enjoyed an automation level of 99.98 per-
cent and a functional test of 560,000 lines
of COBOL transformed at 99.99 percent
that only identified 400 bugs during func-
tional testing, many of which were resi-
dent in the original COBOL system.
These same automated tools have also
recently been applied to the transforma-
tion of C, FORTRAN, and BAL
Assembler systems with levels of automa-
tion that have been demonstrated to
exceed 99.99 percent for large systems. 

The newly generated software also has
the benefit of consistent quality and uni-
formity because an automated tool created
it. Systems comprised of large quantities of
code, if addressed manually, will require
many programmers. Programmers,
though writing code in the same lan-
guages, have different styles and skills.
Those differences can create major diffi-
culties during the system integration and
testing phase of a transformation project.
A highly automated approach requires
negligible manual intervention, offers a
solution that facilitates the uniformity of
the code and thus, compresses the integra-
tion and testing schedule for the project. 

Technology Description 
By employing AI-based automated pro-
gram transformation technologies, the
legacy application and database modern-
ization process can be addressed in four
disciplined steps:
• Assessment: Captures the legacy sys-

tem’s As Is state by extracting properties

of the existing system’s design, and
simultaneously generating detailed
documentation of the system. 

• Transformation: Provides transformed
software that is compiler-ready and
testable at the unit level, and fully doc-
umented.

• Refactoring: Reengineers the new sys-
tem to improve system architecture
and performance. The refactoring
process provides a disciplined
approach to design improvement that
minimizes the chances of introducing
new flaws.

• Web-enablement: Facilitates migration
of the new system to the Web environ-
ment by transforming the legacy appli-
cation to Java that runs on a Java
Virtual Machine.

Figure 2 illustrates the process for auto-
mated legacy system modernization
through the assessment, transformation,
and refactoring processes. A discussion of
these three building blocks along with
associated Web-enablement of a modern-
ized system follows.

Assessment
The code is parsed to build an in-memory
knowledge-based abstract syntax tree
(KBAST) model of the entire system. An
inventory is developed, using an iterative
process, against the KBAST model to
determine if any components of the appli-
cation system are missing, detect multiple
versions of code, and identify linkage
problems. Deviations of the dialects from
standard are typically not well document-
ed; this makes it necessary to develop a
series of modifications to the parser before
the technology addresses all constructs of
the applications code.

After development of the KBAST
model, a preliminary transformation of
the source code into the target To Be
model is performed. The purpose of this
effort is to assess and compare the As Is
and To Be system models to determine
what modifications are to be made to the
transformation process to achieve a highly
automated transformation into the target
language. 

A dry run of the transformation

December 2001 www.stsc.hill.af.mil 19

Automated Transformation of Legacy Systems

Figure 2: Automated Modernization of Legacy System into C++



Software Legacy Systems

20 CROSSTALK The Journal of Defense Software Engineering December 2001

process is performed by creating an inter-
mediate object-oriented (IOO) model to
develop the transformation metrics,
including identification of the percentage
of redundant and re-usable code, current
and predicted code properties, and poten-
tial code and data size reductions possible
in the refactoring process. The code is then
transformed into the IOO formalism that
allows for detailed identification and
assessment of the properties of the target
system. Of key significance for reuse and
maintenance is 1) extraction, parameteri-
zation, and merging of derived methods
associated with derived classes; and 2)
measurement of the amount of decoupling
and degree of cohesion and coherence of
the resultant system.

The final step of the assessment
process involves domain analysis of a sys-
tem, which is a process that systematically
creates a common framework for describ-
ing program elements and situations with-
in the code. This descriptive framework
facilitates recognition of unique and com-
mon roles and relationships among one or
more systems. The framework has two
tightly related dimensions of analysis that
address both the classifications of identi-
fiers (data and structures) as well as the
situations that involve their usage.

The construction of the first dimen-
sion of analysis entails describing the indi-
vidual names that occur within a system as
elements of common terms within a
domain dictionary. 

The second dimension describes the
more complex relationships among ele-
ments in the form of interpretations. The
interpretations are denotations for complex
situations in the code. The AI-based tech-

nology automatically constructs interpreta-
tions by rewriting code directly from the
structures represented by the code’s abstract
syntax in the KBAST. Interpretations
resemble the sentential and syntactic form
of the code except that domain dictionary
terms have been substituted for the identi-
fier names in the program code. A single
interpretation will therefore match many
syntactically similar but terminologically
different specific situations. These situa-
tions may occur in the code and serve to
identify commonality among complex rela-
tionships that occur within a single system
or span multiple systems.  

Interpretations are stored within anno-
tation libraries and used within the tech-
nology for documenting decisions about
the situations in the code. Interpretations
are automatically generated for individual
program statements, data structure defini-
tions, basic code blocks, functions, or
entire programs. These interpretations
range in specificity from generic to
domain-specific interpretations. The
degree of specificity or generality in the
interpretation depends upon the relative
generality or specificity of the type denota-
tion substitutions. The size of the inter-
pretation depends upon the user-directed
or system-directed choice of context of
interest.

Domain analysis assists in identifying
issues and opportunities in the transfor-
mation and refactoring process. It only
requires manual intervention when it is
necessary to establish a taxonomic system
to support classification tasks. An example
would be the identification or comparison
of sets of code-level statement functions
and data structures that are of specific

interest such as the data-related usages in
an entire application.

Transformation 
The modernization process begins with
the automatic identification of candidate
classes and objects for output into an IOO
model. This is a relatively complete trans-
formation of the input source code into an
IOO model that is consistent with the
structure of object-oriented (OO) C++.
This transformation into the IOO form
locates redundant, duplicate, and similar
data and processes, and abstracts those
detected items into classes and methods.
The classes, relationships, attributes, and
operations of the derived IOO model con-
form to Universal Modeling Language
(UML) standards.  

The overall process for transforming
from a procedural to an OO application
starts with input of legacy application pro-
grams and produces as output a complete-
ly integrated and modernized system. The
output system consists of object classes and
their instances that are complete with
regard to data typing, methods, and IOO
processes (executable mission-oriented
C++ functions, which refer to class mem-
ber element and member functions or
methods). These constructs possess a
derived architecture and control structure
consistent with the OO programming par-
adigm. The IOO application contains calls
to derived methods associated with desired
classes. Figure 3 provides a more specific
depiction of the IOO model generation
process. 

The design documentation extracted
from the IOO model is a hybrid between
conventional OO modeling languages and
event-driven programming models. The
mapping from procedural code into OO
code is functionally faithful to the original
procedural system. However, this IOO
model follows the semantic and syntactic
rules of the OO languages C++ and Java.  

It should be emphasized that variations
in the transformation process do not come
for free. The effort of adapting the trans-
formation technology base to customer-
specific objectives typically requires tailor-
ing the transformation pathways to cus-
tomer-specific objectives. This is the prin-
ciple effort performed by a transformation
service provider in a highly automated sys-
tem modernization process.

Support for the system transformation
processes comprises a wide range of tasks.
Some of the components include physical
transformation of the application software,
user interface, databases, and platform
adaptation. Table 1 illustrates the overall

Data Records
X,Y,Z

Data Fields:
Q,U,S

Procedural Systems

Procedures
Functions
K, J, L, M, N

Program Unit
Scope
Set/Use
Slicing
Analysis

Control Flow
Graphs of

Procedures &
Programs

Alias
Analysis

Of
Records

Data Flow
Graphs Of
Procedures

Program Slices:
for

Basic Blocks

Methods
M-q, M-r, M-s

Attached to
Classes

Procedures
rewritten

in terms of
C++ method calls

and reusable
templates

State Transition
Tables document

process control flow
and method invocations

sequence

Program A

Program B

Program C

Data Structures
X, Y ,Z

Data Items
q, r, s

Classes: X,Y,Z

Attr: Q, R, S
Instances: A, B, C

State Transition

Tables of SMM

State Machine

Models of CFGS

State Transition Tables
(Business Rules)

State Machine

C1
C2
C3

 T   T    F
 F   T    F
 T   T    F

M-q
M-r
M-s

1    1
2    1   2
3    2   1

Method Data FlowObject Class Hierarchy

W

ZX Y X
Y

Z

M-q

Figure 3: Architecture of the Avionics Simulation Station



December 2001 www.stsc.hill.af.mil 21

Automated Transformation of Legacy Systems

set of activities in modernizing an infor-
mation system. The principal roles and
responsibilities of the transformation tech-
nology provider, major system integrator,
and customer are indicated in the column
headings. 

The principal project phases are identi-
fied in the table cells in Table 1. Column
one task components include application
transformation, user interface transforma-
tion, database transformation, and plat-
form adaptation, and can be addressed
with a very high level of automation. The
second column involves functional testing
of all major components to assure func-
tional integrity of the resultant system in
the new target environment. The final col-
umn encompasses deployment and
retraining of the user base. 

In a typical engagement, the user inter-
face is automatically transformed into a
functionally equivalent user interface in the
target environment. The database is con-
verted using information derived from the
system database descriptions that drive
database conversion programs. Platform
and operating system calls are transformed
into equivalent target environment services. 

Generally, we have found it possible to
automate virtually all of the application,
database, user-interface, and platform
adaptation tasks. Automation has not been
introduced where manual processes are
already adequate such as the specification
of index fields in a relational database
using the interface provided by the data-
base vendor, testing the system user-inter-
face, or identification and reporting of sys-
tem bugs and enhancements. 

Throughout the development of an
automated process the largest unknowns
have been resolving configuration discrep-
ancies that surfaced because the original
source code was either incomplete or
could not be demonstrated to build the
original system, and determining the func-
tionality of undocumented legacy system
calls. The most significant areas of effort
have been in the replacement of legacy
platform functionality that did not exist in
the target environment, and enhancing
the dialect-specific language constructs.

Refactoring 
Refactoring is the process of changing a
software system to improve the software’s
structure and performance without alter-
ing its functional behavior. Refactoring is
used to eliminate, replace, or rewrite code
to improve its efficiency and understand-
ability or to transform applications to use
a suitable set of modern infrastructure
support functions. Refactoring extracts

and parameterizes methods; merges and
consolidates similar methods; reduces the
set of methods associated with a class to
the minimal set of well-understood opera-
tions; improves the coupling, cohesion
and comprehensibility of the overall appli-
cation; and reduces overall code duplica-
tion and code redundancy. 

Legacy applications often have many
dependencies on the legacy software infra-
structure. Consequently, it is often not
directly portable to another software envi-
ronment. Modernization of applications
often requires isolating the application-
specific code from the code associated
with various environment-specific utili-
ty/support functions known as infrastruc-
ture code. 

Often the legacy infrastructure func-
tionality does not exist in the new envi-
ronment, or exists in a different form.
Thus, this layer of support services must
be discontinued, redeveloped, or suitably
replaced. The definition or introduction of
an appropriate interface to the facili-
ties/services layer into the newly derived
application requires the development of
new code or an application program inter-
face (API) layer to comparable support
services in the target platform. This is also
required to test both the interface and the
service layers accessed through the facili-
ties/services layer interface. 

Adaptation of the application to inter-
face with a target environment not previ-
ously encountered is the most manually
intensive effort in a transformation proj-
ect. In our experience, this adaptation has
been the single largest source of schedule
risk, though it is not in general, a signifi-
cant technical risk. Generally lessons
learned from these kinds of adaptation
tasks are transferable between projects.
Separation of these infrastructure layers
from the application layers via a suitable
interface layer expedites resolution of
errors that arise from variations in alterna-
tive target operational environments. 

Web-Enablement
Web-enablement entails the transforma-
tion of an application into a networked,

distributed application that makes use of
the following: 
• Browser user-interfaces (BUI).
• Web-based languages.
• Run-time environments such as Java

and the Java Virtual Machine (JVM).
• Web-based data transmission and

manipulation protocols such as the
Extended Markup Language for the
interchange of data. 
Hybrid Web applications exhibit

some, but not necessarily all of these fea-
tures. A Web-application may be written
in C++ and have a BUI front-end that sup-
ports interface with users, or a back-end
database with connectivity via Microsoft’s
Object Data Base Connectivity (ODBC).
Java applications typically employ Java
Data Base Connectivity to connect to var-
ious vendor database products with similar
functionality as ODBC.

The Common Object Request Broker
Architecture (CORBA) has a common
interface definition language (IDL) that
supports both Java and C++. CORBA is
commonly used to provide distributed
component services for a smaller number
of users with high-performance require-
ments. CORBA’s IDL facilitates the cre-
ation of networked distributed applica-
tions by simplifying the definition of
interfaces that allow components to call
one another that reside anywhere in the
network, and may be implemented in any
language that supports IDL. A component
architecture such as J2EE provides stan-
dardized, extensible server-side and client-
side components to provide multi-tier dis-
tributed services. Java more typically uses
remote method invocation than CORBA
IDL for transferring data between distrib-
uted components. 

Support for both CORBA and
Enterprise Java Beans for distributed com-
ponent management services can coexist
in large applications. For instance,
CORBA with C++ can be used for highly
optimized transaction-oriented database
applications, while Java Enterprise Java
Beans and Java Applets are often used
for highly interactive distributed appli-
cations.

Transformation
Technology Provider

Major Systems Integrator Integrator and Customer

Platform Adaptation Platform Adaptation
Function Test

Platform Adaptation
Deployment

User Interface
Transformation

User Interface
Transformation Reqt’s
Function Test

User Interface
Transformation Reqt’s
Deployment

Data Base Transformation Data Transformation
Function Test

Data Transformation
Deployment

Application Transformation Application Functional Test Application Deployment

Table 1: Legacy System Modernization Services and Responsibilities



Software Legacy Systems

22 CROSSTALK The Journal of Defense Software Engineering December 2001

Given the multiple business processes
performed by the applications within large
confederated legacy systems and the trade-
offs between several possible alternative
distributed component Web-based archi-
tectures, the definition of the most appro-
priate transformation approach is a com-
plex decision to be evaluated. The decision
requires an in-depth analysis of the cus-
tomer’s applications, analysis of the impli-
cations of alternative solutions, and possi-
bly some amount of iteration to define an
appropriate transformation pathway. This
decision process is driven by the current
system architecture; the target architecture
objectives; the technical infrastructure,
including overall tool-set capabilities; and
personnel resources available to support
this transformation process.

Conclusion
While transforming legacy source code to
C++ at an automation level of 99.99 per-
cent is achievable using the approach
described here, experience has also shown
that it is unwise to take too many steps
along the modernization pathway at one
time. Hence, one should regard the initial
transformation into C++ as an easily
achievable goal that provides the staging
point for subsequent phases, including
system refactoring, confederated system

consolidation, and Web-enablement. 
It should be emphasized that while

high levels of automation are achievable
for transformation tasks, a modernization
project also involves development and
adaptation tasks that are manually inten-
sive such as infrastructure API layer devel-
opment for unfamiliar legacy or target
platforms. In addition, there are a number
of tasks that by their very nature require
human guidance or description such as
certain forms of domain analysis and
refactoring tasks that require specific
domain expertise. We have however, been
successful at minimizing the effort associ-
ated with these tasks by providing high
levels of machine support for them as well. 

Nevertheless, as today’s organizations
address the critical structural, cultural, and
financial issues surrounding the migration
of their often irreplaceable legacy software
applications and databases to modern plat-
form-independent computing environ-
ments, it is essential that they understand
that a new automated low-risk approach is
available. Exceedingly advanced tool-sets
and processes for rapidly reengineering lega-
cy system software into modern computing
environments provides organizations with a
valuable new alternative that is faster, lower
cost, lower risk, and higher quality than
other methods currently available.u

About the Authors
Philip Newcomb is an
internationally recog-
nized expert in the
application of artificial
intelligence (AI) and
formal methods of soft-

ware engineering, and has published
numerous papers in his field.  He has
done groundbreaking research in
applying AI, software engineering, and
automatic programming.  He formu-
lated the conceptual product frame-
work and developed the software trans-
formation technology and products
offered by The Software Revolution,
Inc. He has graduate work and degrees
from Carnegie Mellon University, the
University of Washington, Ball State
University and Indiana University.  

The Software Revolution, Inc.
3330 Monte Villa Pkwy.
Bothell, WA  98021
Phone: (425) 354-6464
Fax: (425) 354-6465
E-mail: newcomb@softwarerevolution.com

Randy A. Doblar, vice
president, Sales and
Marketing, for The
Software Revolution,
Inc., has more than 28
years experience in

program management and business
development in the defense and com-
mercial marketplace.  He has pub-
lished papers in the scientific disci-
plines of acoustics, geophysics, and
oceanography, and has been instru-
mental in leading The Software
Revolution, Inc.’s effort to establish
the eVolution 2000TM technology as
a new industry standard for legacy sys-
tem modernization.

The Software Revolution, Inc.
3330 Monte Villa Pkwy.
Bothell, WA  98021
Phone: (425) 354-6480
Fax: (425) 354-6465 
E-mail: rdoblar@softwarerevolution.com

Get Your Free Subscription

Fill out and send us this form.

OO-ALC/TISE 
7278 Fourth Street
Hill AFB, UT 84056

Fax: (801) 777-8069  DSN: 777-8069

Phone: (801) 775-5555  DSN: 775-5555

Or request online at www.stsc.hill.af.mil

NAME:_____________________________

RANK/GRADE:_____________________

POSITION/TITLE:___________________

ORGANIZATION:_____________________

ADDRESS:__________________________

_________________________

BASE/CITY:________________________

STATE:_________ ZIP:________________

PHONE:(_____)_____________________

FAX:(_____)________________________

E-MAIL:________________@___________

CHECK BOX(ES) TO REQUEST BACK ISSUES:

JAN2000 c LESSONS LEARNED

FEB2000 c RISK MANAGEMENT

MAY2000 c THE F-22

JUN2000 c PSP & TSP

MAY2001 c SOFTWARE ODYSSEY

JU L2001 c TESTING & CM

AUG2001 c SW AROUND THE WORLD

SEP2001 c AVIONICS MODERNIZATION

OCT2001 c OPEN & COMMON SYSTEMS

NOV2001 c DISTRIBUTED SW DEV.


